- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Brandon L. Peters, K. Michael (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Polymer synthesis routes result in macromolecules with molecular weight dispersity ĐM that depends on the polymerization mechanism. The lowest dispersity polymers are those made by anionic and atom-transfer radical polymerization, which exhibit narrow distributions ĐM = Mw/Mn ∼ 1.02–1.04. Even for small dispersity, the chain length can vary by a factor of two from the average. The impact of chain length dispersity on the viscoelastic response remains an open question. Here, the effects of dispersity on stress relaxation and shear viscosity of entangled polyethylene melts are studied using molecular dynamics simulations. Melts with chain length dispersity, which follow a Schulz–Zimm (SZ) distribution with ĐM = 1.0–1.16, are studied for times up to 800 μs, longer than the terminal time. These systems are compared to those with binary and ternary distributions. The stress relaxation functions are extracted from the Green–Kubo relation and from stress relaxation following a uniaxial extension. At short and intermediate time scales, both the mean squared displacement and the stress relaxation function G(t) are independent of ĐM. At longer times, the terminal relaxation time decreases with increasing ĐM. In this time range, the faster motion of the shorter chains results in constraint release for the longer chains.more » « less
An official website of the United States government

Full Text Available